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Abstract Understanding and predicting the significance of
novel genetic variants revealed by DNA sequencing is a
major challenge to integrate and interpret in medical genet-
ics with medical practice. Recent studies have afforded
significant advances in characterization and predicting the
association of single nucleotide polymorphisms in human
TERT with various disorders, but the results remain incon-
clusive. In this context, a comparative study between dis-
ease causing and novel mutations in hTERT gene was
performed computationally. Out of 59 missense mutations,
five variants were predicted to be less stable with the most
deleterious effect on hTERT gene by in silico tools, in which
two mutations (L584W and M970T) were not previously
reported to be involved in any of the human disorders. To
get insight into the structural and functional impact due to
the mutation, docking study and interaction analysis was
performed followed by 6 ns molecular dynamics simulation.
These results may provide new perspectives for the targeted
drug discovery in the coming future.
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Introduction

DNA sequencing technology is becoming the method of
choice for medical genetic diagnostics. However, the impor-
tant challenge in the DNA sequencing technology involves
the difficulty of interpreting novel sequence variants. Most
geneticists use a combination of traditional genetic methods
relying on segregation with the disease in families, frequen-
cy in controls, biochemical characterization, and evolution-
ary conservation at the variant position [1]. It is often a time
consuming and laborious task to study the molecular basis
of diseases like cancer by these methods. Associations with
polymorphisms in candidate genes have been confirmed
in many diseases, and genome-wide association studies
(GWAS) are identifying many novel associations in
genes that had not been strong a priori candidates for
the disease under test [2]. However, the modest increase
in risk implies that large well-designed and analyzed
studies exist that incorporate robust computational
methods to classify novel variants accurately. The mas-
sive capacity of computational application can be
harnessed for effective screening and validation of ge-
netic variants, which could be a valuable resource for
the pharmacogenomics approach.

Single nucleotide polymorphisms (SNPs) are the most
common type of genetic variation in the human genome
[3, 4]. However, not all the SNPs can correlate with human
diseases. nsSNPs that occur in a coding region can cause an
amino acid substitution, thereby impart structural and func-
tional changes on protein [5] are termed as “deleterious”
and, those nsSNPs which do not have any impact on protein
functions are termed as “tolerated”. Hence, it is necessary to
differentiate deleterious from tolerated nsSNPs. This will
definitely assist in better understanding the genetic basis of
human diseases, and also help in identifying the molecular
and potential therapeutic targets.
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Over expression experiments in human cells have
shown that TERT exhibits activities in cellular transfor-
mation, proliferation, cell survival and chromatin regu-
lation [6, 7]. Telomerase is a specialized ribonucleopro-
tein complex that plays a crucial role in maintaining the
integrity of telomeric DNA [8]. Telomerase consists of a
protein component with reverse transcriptase activity
(TERT), and an RNA component (TERC) which pro-
vides the template for the telomere repeat [9]. hTERT
gene is located within a locus at chromosome 5p13.33.
It encodes a mature protein of 1132 amino acids ar-
ranged within four domains namely, N-terminal, C-
terminal, RNA-binding and reverse transcriptase (RT)
domain. Telomerase associated proteins such as
dyskerin, nucleolar protein-10 (NOP10), non-histone
protein-2 (NHP2) and glycine arginine rich-1 (GAR1)
are required for the assembly of a functional telomerase
holoenzyme complex [10]. Telomerase is active in some
epithelial, haemopoietic and germ line cells. The muta-
tions in protein components of TERT are linked to
certain inherited human disorders of the haemopoietic
system, such as dyskeratosis congenita (DC) aplastic
anemia (AA) and idiopathic pulmonary fibrosis (IPF)
[11–20]. Deleterious nsSNPs in hTERT and its impact
on protein structure and function have not been predict-
ed so far using in silico approach, although they have
received great attention from experimental biologists. In
view of this, we carried out fine-mapping, followed by
functional analysis of associated SNPs identified within
the coding region of hTERT gene using SIFT, PolyPhen
and I-Mutant 2.0 [21–23]. However, the lack of a struc-
tural framework posed serious challenges in rationaliz-
ing results from polymorphic studies to characterize the
impact on protein function. While, the pursuit of a high
resolution experimental structure is underway, we decid-
ed to generate a three dimensional (3D) model based on
homology modeling using two TERT domain structures:
3KYL and 2R4G using SWISS MODEL work space
[24]. Consequently, in order to understand the molecular
mechanism underlying the impact of mutation, docking
analysis and binding analysis were undertaken.
Curcumin, a well known inhibitor for hTERT inhibition
was used to determine the binding affinity toward
hTERT [25]. An atomic-level look at the protein dynam-
ics through molecular dynamics simulations helped in
better understanding the effects of these mutations on
the protein structure, which allows for investigating how
an amino acid variation can create a ripple effect
throughout the protein structure and ultimately affect
function. This finding is likely to have major conse-
quences in understanding of telomerase biology and
the molecular details of telomerase activities due to
polymorphisms.

Materials and methods

Retrieval of SNPs

SNP related information of hTERT gene was retrieved from
the NCBI dbSNP [26], SwissProt [27] and Telomerase da-
tabase [28].

Defining the functional context of missense mutation

The pathogenic effects of missense mutations were analyzed
using SIFT, PolyPhen and I-Mutant 2.0. The default param-
eters of all programs were applied, and only the protein
sequence and missense variant were given as input informa-
tion for each program.

SIFT

SIFT is a sequence homology-based tool that predicts the
variants as “neutral” or “deleterious” using normalized
probabilities calculated from the input multiple sequence
alignment. It uses relevant multiple sequence alignments
(MSAs) from pre-computed BLAST searches from the
NCBI. Variants at a position with normalized probability
scores less than 0.05 or 0 to 0.05 are predicted as deleterious
and scores greater than 0.05 are predicted to be neutral.

PolyPhen

PolyPhen predicts the possible impact of amino acid sub-
stitutions on protein structure and function using straight
forward physical and evolutionary comparative consider-
ations. This prediction is based on straightforward empirical
rules that are applied to the sequence, phylogenetic and
structural information characterizing the substitution. The
input of PolyPhen is an amino acid sequence (FASTA) or
corresponding IDs with the position of the amino acid
variant. PolyPhen searches for the 3D protein structures,
multiple alignments of homologous sequences and amino
acid contact information in several protein structure data-
bases. Subsequently, it calculates PSIC scores for each of
two variants, and computes the difference of the PSIC
scores of these variants. The higher a PSIC score difference
the higher the functional impact a particular amino acid
substitution is likely to have. A PSIC score difference of
1.5 and above is considered to be damaging and less than
1.5 considered as neutral.

I-Mutant 2.0

I-Mutant 2.0 is a support vector machine (SVM)-based tool
for the automatic prediction of protein stability changes
upon single point mutations. The predictions are performed
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starting either from the protein structure or, more important-
ly, from the protein sequence. I-Mutant 2.0 can be used both
as a classifier for predicting the sign of the protein stability
change upon mutation and as a regression estimator for
predicting the related DeltaDeltaG values. Input for I-
Mutant 2.0 is either a protein structure or a sequence. We
used the sequence-based version of I-Mutant2.0 which clas-
sifies the prediction in two classes: (i) DDG<0: decrease
stability (ii) DDG>0: increase stability. The output file
shows the predicted free energy change (DDG) which is
calculated from the unfolding Gibbs free energy change of
the mutated protein minus the unfolding free energy value of
the native protein (kcal mol-1) [23]. DDG.0 means that the
mutated protein has high stability and vice versa.

Modeling the effect of deleterious nsSNPs

Homology modeling and structural validation of human
TERT was carried out on the basis of two TERT domain
structures: 3KYL and 2R4G using SWISS MODEL
workspace and RAMPAGE [24, 29]. Mutation analysis
was performed based on the results obtained from various
in silico tools as mentioned above. SwissPDB viewer was
used to perform mutations at their respective coordinates
[30] and hydrogen atoms were added to the structures using
MolProbity [31]. MolProbity also adds all atom contacts
into the structures and flips asparagine and glutamine side
chains when necessary. By visualizing the position of the
mutated amino acid residues, it is possible to suggest a
physiochemical rationale for the effect on protein activity.
The constructed models were subjected to energy minimi-
zation by steepest descent, using GROMOS96 53a6 force
field. The ligand structure was downloaded from PubChem
[32] in SMILE string format and converted to protein data
bank (PDB) format using CORINA [33].

Docking and interaction analysis of hTERT

We used PatchDock for docking native and mutants of
hTERT with the drug curcumin. Patchdock performs
docking based on molecular shape representation, surface
patch matching plus filtering and scoring [34]. PatchDock is
more reliable because of its fast transformational search,
which is driven by local feature matching rather than brute
force searching of the six dimensional transformation space.
It further speeds up the computational processing time by
utilizing advanced data structures and spatial pattern detec-
tion techniques, such as geometric hashing and pose clus-
tering. Protein and the ligand molecule were given as input
for performing the docking experiments with default root-
mean-square deviation (RMSD) value (4.00 Å). It generated
several complex structures based on docking scores. The
complex structure file, with the best docking score was

selected for further analysis. For a better dynamic stability
of the ligand-receptor complex, electrostatic energy, van der
Waals interaction and hydrogen bond which mainly contrib-
ute the total interaction energy play a major role [35]. The
total interaction energy of the hTERT-curcumin complex
was calculated by PEARLS web server [36]. The negative
value of total interaction energy enables better interaction
and vice-versa.

Molecular dynamics simulation

Molecular dynamics simulations were performed using
the GROMACS 4.5.5 software package [37] with the
GROMOS96 53a6 force field. The systems were solvated
using the 0.9 nm simple point charge (SPC) water embedded
in the simulation boxes, and sufficient potassium and chloride
ions were added to neutralize the charge of the systems. The
system was energy-minimized using the steepest descent al-
gorithm for 5000 steps with no constraints. The energy min-
imized system was equilibrated using the position restrained
simulation under an NVT ensemble (constant number of par-
ticles, volume and temperature) for 1000 ps to stabilize the
temperature at 300 K with Berendsen thermostat followed by
an NPT ensemble (constant number of particles, pressure and
temperature) for 1000 ps to stabilize the pressure at 1.0 bar
with Parrinello-Rahman pressure coupling factor. Finally, un-
restrained MD simulation was performed for 6 ns with
Berendsen thermostat of 300 K and the pressure at 1.0 bar
with Parrinello-Rahman pressure coupling factor. The trjconv,
g_rms, g_sasa, g_rmsf and g_hbond [38] utilities of
GROMACS 4.5.5 were used to analyze the MD results. In
order to generate the three-dimensional backbone RMSD,
RMSF of carbon-alpha, number of hydrogen bonds, SASA
analysis and motion projection of the protein in phase
space of the system were plotted for all the simulations using
Graphing, Advanced Computation and Exploration (GRACE)
program.

Results

Analysis of deleterious nsSNPs using SIFT

SIFT predicts whether an amino acid substitution affects the
protein function based on sequence homology and the phys-
ical properties of amino acid. SIFT program focuses more
on sequence conservation over evolutionary time and the
nature of amino acids in predicting the effect of residue
substitutions on function. About 14 % of nsSNPs were
predicted as highly deleterious, exhibited a SIFT score of
0.00, 15 % of nsSNPs exhibited a score ranging from 0.01 to
0.05 were predicted as deleterious, and the remaining 71 %
of nsSNPs were predicted as benign (Supplementary
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Table 1). Thus, 29 % of nsSNPs were predicted to be
intolerant, that could bring about a change in protein
function.

Analysis of deleterious nsSNPs using PolyPhen

PolyPhen evaluates the location of the amino acid replace-
ment within identified functional domains and 3D struc-
tures. All protein sequences submitted to SIFT were also
submitted to PolyPhen. Unlike SIFT, it does not solely
depend on sequence homology alone to make SNP func-
tional prediction, but also on structural information. By
PolyPhen 25 % of the nsSNPs were predicted to be “prob-
ably damaging”, 27 % of the nsSNPs to be “possibly dam-
aging”, and the remaining 48 % were characterized as
benign. Most of the mutations predicted to be deleterious
were also predicted to be damaging by PolyPhen
(Supplementary Table 1).

Identification of functional nsSNPs using I-Mutant 2.0

All the nsSNPs submitted to SIFT and PolyPhen were also
submitted as input to the I-Mutant 2.0. Based on the differ-
ence in Gibbs free energy value of mutated and wild type
proteins, 83 % of nsSNPs are found to destabilize the
protein (DDG < 0 Kcal mol-1) (Supplemental Table 1).

Homology modeling

To date, no experimentally determined 3D structure is avail-
able for hTERT. Hence, hTERT protein 3D structure analy-
sis using homology modeling further provides structural

representation of nsSNPs. BLAST search identifies two
suitable templates (3KYL and 2R4G) for modeling of
TERT. These matches span the second half of the protein
(starting from residue 526 to 1121). The model with the
tightest geometrical restraints on the Cα positions was
obtained by the SWISS MODEL workspace. RAMPAGE
software was used to validate the modeled structure.
Ramachandran plot for the model shows 98.6 % of the
residues in either the core region or allowed region and
remaining 1.4 % of the residues in the generously allowed
region with no residue in the disallowed region as plotted in
Fig. 1.

Mutation structural analysis

Based on the results obtained from the above analysis
(Table 1), three experimentally validated nsSNPs [K570N
(AA), P721R (DKC1), R865H (IPF)], and two non-
experimentally validated mutations [M970T and L584W]
were chosen for the structural analysis (Fig. 2). Based on
the position of amino acids in the corresponding chains of
the crystallized structures, the mutation analysis were
performed using SWISSPDB viewer and energy minimiza-
tion were carried out using the program package
GROMACS 4.5.5.

Analysis of the local environment changes

By visualizing the position and proximity of the substituted
amino acid to surrounding residues, it is possible to suggest
a physiochemical rationale for the effect, or the lack of any
effect, of the substitution on protein activity. Hence, the
interacting residual changes and polar contact points were
visualized within the range of 4A° using PyMOL. The
change in the local environment of the mutant residue is
due to the amino acid properties such as polarity, hydropho-
bicity etc., thereby affecting the function of the protein
through destabilization of the biological unit (Fig. 3).
Superimpositions between native and mutant residues are
displayed in Fig. 4.

Aplastic anemia (K570N)

AA was first identified to be associated with mutations in
pseudoknot region of hTERT. According to the previous
report, K570N mutation results in complete loss of the
ability of telomerase to add hexameric repeats to telomeres,
abolishing telomerase enzymatic function which in turn
causes AA [14]. In K570N, lysine is smaller than the wild
type residue asparagines, which may cause empty space in
the core of the protein. This mutation may also lead to the
change in polarity of hTERT from positively charged lysine

Table 1 Summary of nsSNP predicted to be deleterious by SIFT,
PolyPhen and I-Mutant 2.0

SNP Variant Disease type Reference

VAR_062535 L55Q IPF [13]

rs140261940 T564S -NA- -NA-

VAR_062536 K570N AA [16]

rs143457728 L584W -NA- -NA-

VAR_062783 R631Q AA [17]

rs121918662 V694M AA [15, 17]

VAR_062538 P721R DKC1 [18]

VAR_062540 R811C DKCB4 [19]

rs121918666 R865H IPF [20]

VAR_062541 R901W DKCB4 [19]

rs121918665 K902N AA/DKCA2 [13]

rs149439946 M970T -NA- -NA-

NA not available, IPF Idiopathic pulmonary fibrosis, DKCA2
Dyskeratosis congenita autosomal domi nant type 2 DKCB4
Dyskeratosis congenita autosomal recessive type 4; AA Aplastic
anemia
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to neutral asparagine. The change in the interacting residues
and polar contacts due to mutation is given in Fig. 3a.

Dyskeratosis congenita (P721R)

DC is an inherited disorder characterized by premature
aging and also causes increase risk of cancer. In P721R
mutation, the mutant Argenine (positively charged) was
bigger than the wild-type residue proline (neutral). The
mutated residue is located in a domain that is necessary
for the main activity of the protein. In turn, the mutation
will cause loss of hydrophobic interactions in the core of the
protein. P721R substitution has a significant impact on
telomerase structure and function because of its non-
conservative nature and general importance of proline resi-
due in protein folding [16]. The change in the interacting
residues and polar contacts due to mutation is given in Fig. 3b.

Fig. 1 Ramachandran plot of the constructed hTERT model. Ramachandran plot created by RAMPAGE for hTERT shows 98.6 % of residues in
allowed region and 1.4 % of the residues in generously allowed region with no residues in disallowed region

Fig. 2 Plotting of deleterious nsSNPs in modeled structure of hTERT.
3D structure of modeled hTERT with amino acid variant predicted to
be deleterious by SIFT, PolyPhen and I-Mutant
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Fig. 3 Changes in local
environment of TERT protein.
Changes in local environment
of TERT protein brought about
by various mutations in native
(yellow) and mutant (red) a
K570M, b L584W, c P721R, d
R865H, and e M970T

Fig. 4 Superimposition of
native and mutant residues.
Superimposition of the native
(yellow) and mutant residue
(red) in model structures. a
K570N, b L584W, c P721R, d
R865H, and e M970T
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Idiopathic pulmonary fibrosis (R865H)

IPF is a form of idiopathic interstitial pneumonia character-
ized by progressive and chronic formation of fibrotic scar
tissue in the lungs without any known causative agent [18].
The wild-type residue histidine forms a hydrogen bond with
the glutamic acid on position 325. The size difference be-
tween wild-type and mutant residue may alter the hydrogen
bond as the original wild-type residue did. The difference in
charge will disturb the ionic interaction made by the wild-
type residue. This can cause loss of interactions with other
molecules and in turn leads to possible loss of external
interactions. R865H mutation disrupts the nucleotide posi-
tioning in the active site and therefore, directly compromises
the catalytic reaction. The change in the interacting residues
and polar contacts due to mutation is given in Fig. 3c.

Variant L584W and M970T

L584W and M970T mutations have not been previously
identified, and their effect in structural level is not known.
To address this, we generated and compared the structure of
native and mutant models. Leucine, which is smaller than
tryptophan is buried in the core of the protein. Hence, the
mutant residue probably will not fit in the protein structure
and may in turn destabilize the protein. Whereas in variant
M970T, mutant threonine is smaller that the native methio-
nine which causes an empty space in the core of the protein.
This mutation will lead to loss of hydrophobicity. All these
nsSNPs might lead to decrease in the stability of protein and
therefore a proper validation is needed to know the confor-
mational as well as functional implications. The change in
the interacting residues and polar contacts due to mutation is
given in Fig. 3d and e.

Docking and interaction analysis

In order to understand the binding affinity of hTERTwith its
drug molecule, docking analysis was performed using
PatchDock. According to the literature review Val867,
Ala868 and Asp869 were identified as the active residues
[39]. A comparative analysis between disease causing mu-
tations (K570N, R721P, H865D and L902N) and, the novel
mutations (L584W and T970R) were carried out in this
analysis. Docking score and atomic contact analysis (ACE)
were calculated for both the native and mutant models. The
docking score of native-curcumin complex was found to be
7282, whereas for the mutant model docking score ranges
from 6992 to 7126. Similarly, ACE for native mutation was
found to be −304.28, whereas, for the mutant it was found to
be in the range of −164.17 to −298.22 (Table 2).
Furthermore, the total interaction energy between hTERT
(native and mutant) and curcumin complex, which is mainly

contributed by electrostatic energy and van der Waals inter-
action energy were calculated for validating the binding
efficiency. In the native-curcumin complex, the total inter-
action energy was found to be −8.81 kcal mol-1, whereas,
for mutant models, the range is from −4.01 to −6.89 kcal
mol-1. From this analysis, it was clear that all mutant hTERT
models exhibited less binding affinity with curcumin than
the native model indicating the effect of mutation on the
drug binding efficiency. In the above analysis, the two novel
mutations (L584W and T970R) showed the least ligand
protein interaction (−4.01, −5.00 kcal mol-1) and docking
score (6992, 7014) compared to the other mutants, which
confirmed the impact of these mutations on the binding
affinity of hTERT. This finding inspired us to investigate
the alteration in structural-dynamics properties due to mu-
tation in hTERT.

Molecular dynamics simulation

A comparative MD analysis of disease associated mutants
K570N, P721R, R865H and the two novel mutations
L584W, K970N with the native was carried out. In the
6 ns simulation trajectory, different parameters such as root
mean square deviation (RMSD), root mean square fluctua-
tion (RMSF), hydrogen bond formation, and solvent acces-
sibility surface area (SASA) were applied to analyze the
level of structural changes. The backbone RMSD was cal-
culated from the trajectory value of native and mutant
models. Mutant L584W showed maximum deviation
resulting in backbone RMSD of ∼0.8 nm at 2600 ps, while,
the native type structure obtained maximum deviation of
0.46 nm at 4200 ps (Fig. 5a). Mutant model K570N and
K970N showed almost consistent deviation throughout the
simulation period with a maximum deviation of ∼0.62 nm
attained at ∼2500 ps (Fig. 5a, c). R865H showed less devi-
ation till 2800 ps from their starting structure when com-
pared to the native structure. Between 2800 ps till the end of
simulation R865H showed higher deviation when compared
to the native structure (Fig. 5c). Whereas, P721R showed
frequent decrement in backbone RMSD till 4600 ps when
compared to the native structure, after which a marginal
increase in backbone RMSD of about 0.1 nm was observed
till the end of the simulation (Fig. 5c). The RMSD of
L584W was higher throughout the process, and a maximum
deviation of 0.4 nm was observed at around 2.6 ns between
the native and mutant model (Fig. 5a). The RMSF profile
was determined for the mutants, and it was observed that
L584W mutation affects neighboring residues at the maxi-
mum of around 0.7 nm fluctuation indicating a gain of
flexibility due to mutation (Fig. 5b). Further, the RMSF
values of K570N, P721R, R865H and K970N observed a
similar fluctuation throughout the process indicating an
increase of flexibility as compared to the native protein
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(Fig. 5b, d). Native model of hTERT protein obtained an
average number of ∼410 hydrogen bonds throughout the
simulation period (Fig. 6a). The mutant models K570N,
L584W, P721R, R865H and M970T showed fewer number

of hydrogen bonds, when compared to the native protein
(Fig. 6a, c). Since the numbers of hydrogen bonds were less
in the mutant models, the reduced number of hydrogen
bonds may affect the protein stability. It is noted that

Table 2 Comparison of docking score, atomic contact energy (ACE) and ligand-receptor

hTERT Score ACE Ligand receptor electrostatic
energy (kcal mol-1)

Ligand receptor van
der Waals energy (kcal mol-1)

Ligand receptor total
interaction energy (kcal mol-1)

Native 7282 −304.28 −0.81 −7.80 −8.81

K570N 7114 −182.54 −0.62 −5.06 −5.90

L584W 6992 −164.17 −0.54 −3.41 −4.01

R721P 7126 −298.22. −0.77 −5.89 −6.89

H865N 7034 −201.32 −0.64 −5.49 −6.37

T970N 7014 −169.24 −0.57 −4.12 −5.00

Interaction energies of native and mutant hTERT with curcumin

Fig. 5 RMSD and RMSF of native and mutant model of hTERT. A.
RMSD of native, non experimentally verified mutant L584W and
M970T B. RMSF of native, non experimentally verified mutant
L584W and M970T C. RMSD of native and experimentally verified

mutant L570W, P721R, R865H D. RMSF of native and experimentally
verified mutant L570W, P721R, R865H. Coloring scheme - native
(black), L570W (blue), P721R (red), R865H (green), L584W (yellow),
and M970T (purple)
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SASA value for both native and mutant protein stabilizes
after 3000 ps (Fig. 6b, d). The average SASA value of
disease mutations K570N, P721R and R865H was found
to be higher in comparison with the native protein, thereby
validating the experimental results indicating loss of hTERT
function due to mutations (Fig. 6d). In the case of novel
mutations L584W and M970T, the fluctuation in SASA
indicated greater value when compared to native protein
(Fig. 6b). This indicates that the mutant proteins might be
undergoing a significant structural transition, when com-
pared to native protein.

Discussion

In this comprehensive analysis, we provide functional evi-
dence for the disease-associated point mutations of the pro-
tein component of human telomerase. We have presented a
list of nsSNPs that could constitute as relevant genetic
markers and also useful for disease association and linkage
disequilibrium studies. The selection of nsSNPs likely to

cause the most severe effects on the function of the protein
and on the phenotype could be facilitated considering sev-
eral criteria. Some amino acid variations are more likely to
alter 3D structure of the candidate proteins than others. The
possible impact of amino acid allelic variants on protein
activity is thus a function of both the structural locations
of nsSNPs and phylogenetic conservation [40]. The basic
criteria for these computational methods are sequence ho-
mology, physicochemical properties of the substituted resi-
dues and structural information. To study the functional
consequences of nsSNPs in relation to the molecular basis
of diseases at the structural level requires the integration of
heterogeneous information such as protein sequence, protein
structure (3D), and their associated variants. Mapping of
deleterious nsSNPs to protein 3D structures and, analyzing
at the structural level will reveal the full extent to which they
can alter the activity of protein. Proteins with mutations do
not always have 3D structures that are analyzed and sub-
mitted in Protein data bank (PDB). Therefore, it is necessary
to model 3D structure of protein by locating the mutation in
3D structures. This is a simple way of detecting what kind of

Fig. 6 SASA and H bond of native and mutant model of hTERT. A.
SASA of native, non experimentally verified mutant L584W and
M970T. B. H bond of native (black), non experimentally verified
mutant L584W and M970T. C. SASA of native and experimentally

verified mutant L570W, P721R, R865H. D. H-bond of native and
experimentally verified mutant L570W, P721R, R865H. Coloring
scheme - native (black), L570W (blue), P721R (red), R865H (green),
L584W (yellow) and M970T (purple)
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adverse effects that a mutation can have on a protein. In
silico approaches such as homology modeling and molecu-
lar dynamics approach will aid in elucidating the structural
impact of deleterious nsSNPs at the molecular level. To
determine the functional nsSNPs in hTERT gene, in silico
tools with diverse approaches like SIFT, PolyPhen and I-
Mutant 2.0 were used. From the results obtained, SIFT,
PolyPhen and I-Mutant 2.0 predicted 29 %, 52 % and
83 %, nsSNPs to be deleterious and 71 %, 48 % and
17 %, to be tolerated respectively. The variation in the
prediction score of SIFT and PolyPhen is mainly due to
the difference in protein sequence alignment, and the scores
used to classify the variants [41]. A recent analysis by
Flanagan et al. 2010 confirmed the accuracy of SIFT and
PolyPhen in predicting the effect of nsSNPs on protein
function [42]. Our group also tried to evaluate the accuracy
of SIFT, PolyPhen and I-Mutant 2.0 based predictions on
ATM, G6PD, F8 and F9 genes [43–45]. In order to improve
our efficiency and rationality for validating the deleterious
nsSNPs in hTERT, the 3D homology structure was
constructed. The modeled structure was verified using
RAMPAGE server, to be of good quality and thus was used
for docking analysis followed by MD approach. We first
considered the functional impact of mutations in hTERT
that have recently been identified in association with dis-
eases like AA, DKC and IPF. Our findings successfully
identified the following mutations K570N, P721R and
R865H that lead to drastic change in protein stability and
showed a good concordance with experimentally proved
data. It was noteworthy that, K570N mutation effectively
abolished telomerase enzymatic function, even though it is
highly divergent among the telomerase of the different spe-
cies [14]. Similarly, P721R and R865H mutations drastical-
ly reduced telomerase enzymatic activity, suggesting that
these seemingly non-conserved residues may be involved
in either the structural formation or functional property of
telomerase [16, 18]. The precise function of L584W and
M970T is still not elucidated, but we investigated computa-
tionally using homology modeling and molecular dynamics
approach. Calculating the interaction energy is extremely
crucial to understand the biological activity of most protein
interacting with its partner. All mutant models exhibited low
docking score and high interacting energy indicating loss of
interaction of curcumin with hTERT when compared with
native protein. From these studies, it can be concluded that
mutation had altered the residues surrounding the binding
residues thereby disturbing the normal biological process.
This information might provide molecular insights into the
impact of mutations on protein stability, folding and func-
tion. Furthermore, one of the novel findings in this study
was the identification of two deleterious mutations L584W
and M970T, for which there is no information regarding the
biological role in telomerase database and literature search.

Conclusions

In conclusion, we have addressed the problem faced by the
experimental biologist in identifying novel mutations. The
main aim of this analysis is to suggest the impact of several
important nsSNPs, both disease causing and novel that
could impart structural and functional alteration in hTERT
gene. A comparative analysis between the disease associat-
ed, and novel mutations, ascertains that L584W and M970T
could play a major role in affecting the telomerase activity.
To the best of our knowledge this is the first ever reported
study that incorporates in silico tools in combination with
docking study and interaction analysis followed by molec-
ular dynamics approach for prioritizing of deleterious
nsSNPs in hTERT gene. The set of in silico SNPs we have
identified provides information necessary for investigating
its mechanism further for polymorphism analysis in addition
to the available resources assembled in telomerase database
[28].
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